# Photooxidation of Cytochrome $b_{559}$ in Oxygen-Evolving Photosystem II<sup>†</sup>

Carolyn A. Buser, Bruce A. Diner, and Gary W. Brudvig\*, and Gary W

Department of Chemistry, Yale University, New Haven, Connecticut 06511, and Central Research & Development Department, E. I. Du Pont de Nemours & Co., Wilmington, Delaware 19880-0173

Received March 13, 1992; Revised Manuscript Received August 14, 1992

ABSTRACT: Cytochrome  $b_{559}$  (cyt  $b_{559}$ ) is an intrinsic and essential component of the photosystem II (PSII) protein complex, but its function, stoichiometry, and electron-transfer kinetics in the physiological system are not well-defined. In this study, we have used flash-detection optical spectroscopy to measure the kinetics and yields of photooxidation and dark reduction of cyt  $b_{559}$  in untreated,  $O_2$ -evolving PSII-enriched membranes at room temperature. The dark redox states of cyt  $b_{559}$  and the primary electron acceptor,  $Q_A$ , were determined over the pH range 5.0-8.5. Both the fraction of dark-oxidized cyt  $b_{559}$  and dark-reduced  $Q_A$ increased with increasing acidity. Consistent with these results, an acid-induced drop in pH from 8.5 to 4.9 in a dark-adapted sample caused the oxidation of cyt  $b_{559}$ , indicating a shift in the redox state during the dark reequilibration. As expected from the dark redox state of cyt  $b_{559}$ , the rate and extent of photooxidation of cyt b<sub>559</sub> during continuous illumination decreased toward more acidic pH values. After a single, saturating flash, the rate of photooxidation of cyt  $b_{559}$  was of the same order of magnitude as the rate of  $S_2 Q_A^-$  charge recombination. In untreated PSII samples at pH 8.0 with 42% of cyt  $b_{559}$  oxidized and 15% of  $Q_A$  reduced in the dark, 4.7% of one copy of cyt  $b_{559}$  was photooxidized after one flash with a  $t_{1/2}$  of  $540 \pm 90$  ms. On the basis of our previous work [Buser, C. A., Thompson, L. K., Diner, B. A., & Brudvig, G. W (1990) Biochemistry 29, 8977] and the data presented here, we conclude that  $S_{n+1}$ ,  $Y_Z^*$ , and P680<sup>+</sup> are in redox equilibrium and cyt  $b_{559}$  (and  $Y_D$ ) are oxidized via P680<sup>+</sup>. After a period of illumination sufficient to fully reduce the plastoquinone pool, we also observed the pH-dependent dark reduction of photooxidized cyt  $b_{559}$ , where the rate of reduction decreased with decreasing pH and was not observed at pH <6.4. To determine the direct source of reductant to oxidized cyt  $b_{559}$ , we studied the dark reduction of cyt  $b_{559}$  and the reduction of the PQ pool as a function of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) concentration. We find that DCMU inhibits the reduction of cyt  $b_{559}$  under conditions where the plastoquinone pool and  $Q_A$  are reduced. We conclude that  $Q_B^{-\bullet}(H^+)$  or  $Q_BH_2$  is the most likely source of the electron required for the reduction of oxidized cyt  $b_{559}$ . On the basis of our results and their mechanistic implications, we suggest that cyt  $b_{559}$  mediates cyclic electron transfer within PSII, where cyt  $b_{559}$  is oxidized by P680<sup>+</sup> via a monomer chlorophyll and is reduced by a reducing equivalent from the Q<sub>B</sub> site.

Cytochrome  $b_{559}$  (cyt  $b_{559}$ ) is closely associated with the reaction center of PSII1 and has long been the object of experimental scrutiny. However, its function and stoichiometry remain controversial. The oxidation and reduction of cyt b<sub>559</sub> by the light-induced reactions in PSII suggest a functional role for cyt  $b_{559}$  in the redox chemistry of the reaction center. However, the low quantum yields of these reactions exclude a role for cyt  $b_{559}$  in the main electron transport chain. Furthermore, the two polypeptides ( $\alpha$  and  $\beta$ ) associated with the cyt  $b_{559}$  protein appear to have a significant structural role, since the presence of the  $\beta$ -polypeptide is required for the assembly of the PSII reaction center (Pakrasi et al., 1990). As an intrinsic, redox-active component of the PSII reaction center, cyt  $b_{559}$  may have a function related to the unique ability of PSII to oxidize water, such as a role in the protection of the reaction center from the highly oxidizing environment generated in PSII for the catalyzed oxidation of water (Thompson & Brudvig, 1988). In order to fully understand electron transport and water oxidation in PSII, it is essential to characterize the paths and kinetics of oxidation and reduction of cyt  $b_{559}$  in  $O_2$ -evolving PSII.

Both in O<sub>2</sub>-evolving and in non-O<sub>2</sub>-evolving PSII, the dominant path of reduction of P680+ occurs via the oxidation of the tyrosine residue Yz (Scheme I). In untreated O2evolving chloroplast and PSII-enriched membranes, the rate of electron transfer from Yz to P680+ is several orders of magnitude faster than the rate of electron donation from cyt  $b_{559}$  to P680<sup>+</sup>. As a result, the quantum yield of oxidation of cyt  $b_{559}$  by  $P_{680}^+$  is very low in comparison to the quantum yield for formation of Yz\* per reaction center turnover [reviewed by Mathis and Rutherford (1987)]. Consequently, earlier studies have characterized the photooxidation of cyt  $b_{559}$  only under conditions in which the electron donation from the Mn complex is either prevented or circumvented; inactivation of the O2-evolving complex significantly slows YZ to P680<sup>+</sup> electron-donation kinetics [Conjeaud & Mathis, 1980; reviewed by Buser et al. (1990)]. Whereas the small extent and slow rate of oxidation of cyt  $b_{559}$  are incompatible with its involvement in the dominant path of electron transfer, the kinetics and yield are suggestive of a competition between cyt  $b_{559}$  and the water-oxidizing path for electron donation to P680+.

<sup>&</sup>lt;sup>†</sup> This work was supported by the National Institutes of Health (GM 32715).

<sup>&</sup>lt;sup>‡</sup> Yale University.

E. I. Du Pont de Nemours & Co.

<sup>&</sup>lt;sup>1</sup> Abbreviations: BBY-type PSII, PSII prepared by the method of Berthold, Babcock, and Yocum (1981); bicine, N,N-bis(2-hydroxyethyl)-glycine; Chl, chlorophyll; Chl<sub>z</sub>, monomer chlorophyll involved in photooxidation of cytochrome  $b_{559}$ ; cyt, cytochrome; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; EPR, electron paramagnetic resonance; Hepes, N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid; MES, 2-(N-morpholino)ethanesulfonic acid; PQ, plastoquinone; PQH<sub>2</sub>, plastoquinol; PSII, photosystem II; tricine, N-[tris(hydroxymethyl)methyl]-glycine.

Scheme I: Pathways for Electron Donation to P680<sup>+</sup> in O<sub>2</sub>-Evolving PSII

In earlier work, we studied the kinetics and yields of photooxidation of cyt  $b_{559}$  in O<sub>2</sub>-inactive, NH<sub>2</sub>OH-treated PSII-enriched membranes at room temperature (Buser et al., 1990). In dark-adapted, O2-inactive PSII-enriched membranes, in which  $\approx$ 20% of cyt  $b_{559}$  was oxidized and  $\approx$ 52–64% of QA was reduced in the dark, we observed the photooxidation of 3.5-4.7% of cyt  $b_{559}$  after a single, saturating flash with a  $t_{1/2} \approx 13 \text{ ms (pH 6.2).}^2$  The BBY-type preparation of these PSII samples slows Q<sub>A</sub> to Q<sub>B</sub> electron transfer (by reducing the size of the PQ pool or possibly by damaging the Q<sub>B</sub> site). The subsequent NH2OH treatment removes the tetranuclear Mn complex of the O2-evolving center and appears to completely inhibit QA to QB electron transfer (either by further depletion or reduction of the PQ pool during the NH2OH treatment). As a result, the charge-separated state Yz\* QAhas a lifetime of >1 ms in NH2OH-treated PSII-enriched membranes. On the basis of our results and earlier investigations of electron transfer in O2-inactive PSII, we proposed a model for electron donation in which Yz\* and P680+ are in redox equilibrium and cyt  $b_{559}$  and  $Y_D$  are oxidized via P680+ during the lifetime of the oxidizing equivalent on Y<sub>Z</sub>/P680 (i.e., the lifetime of the Yz\* QA charge separation). On the basis of the success of this model to describe the electrontransfer events in O2-inactive PSII reaction centers, we suggested that, in O<sub>2</sub>-active PSII,  $S_{n+1}$ ,  $Y_Z^{\bullet}$ , and P680<sup>+</sup> are in redox equilibrium (Scheme I) and predicted that the kinetics and yields of electron donation from cyt b<sub>559</sub> and Y<sub>D</sub> to P680<sup>+</sup> will depend on the lifetime of the oxidizing equivalent on  $S_n$  $Y_{Z}/P680.$ 

The photoreduction, as well as the photooxidation, of cyt  $b_{559}$  has been observed in PSII-enriched membranes and chloroplasts; however, the kinetics of reduction are not well characterized and the identification of the reductant species to cyt  $b_{559}$  remains ambiguous. Comparison of the kinetics of reduction of cyt  $b_{559}$  and the PQ pool in chloroplasts led to the general conclusion that cyt  $b_{559}$  is reduced by either  $Q_A$ , Q<sub>B</sub>, or plastoquinone (Cramer & Whitmarsh, 1977). Since then, several studies, using a variety of inhibitors to block QA to Q<sub>B</sub> electron-transfer or to inhibit either the oxidation or reduction of the PQ pool, have attempted to further pinpoint the reductant of oxidized cyt  $b_{559}$ . Although these studies generally identify either the QB site or the PQ pool as the source of electrons to cyt  $b_{559}$ , the results are inconsistent. For example, the inhibitor DCMU has been reported to completely inhibit photoreduction (Tsujimoto & Arnon, 1985), to partially inhibit photoreduction (Yamagishi & Fork, 1987), to only affect the rate but not the extent of photoreduction (Whitmarsh & Cramer, 1978), or to be necessary to detect the photoreduction of cyt  $b_{559}$  at room temperature (Ben-Hayyim, 1984). Recently, the photoreduction of cyt  $b_{559}$  in thylakoids was reinvestigated, where the rate and extent of cyt  $b_{559}$  photo-oxidation were compared to the rate of electron transport from water to methyl viologen as a function of DCMU concentration (Samson & Fork, 1991). Since DCMU concentrations which appeared to block the photoreduction of methyl viologen were found to only partially inhibit the rate of cyt  $b_{559}$  photoreduction, the authors suggest reduced  $Q_A$  as the reductant to cyt  $b_{559}$ . However, in addition to difficulty of deconvoluting the cyt  $b_{559}$  absorbance spectrum from cyt  $b_6$  and cyt f in thylakoids, the presence of ferricyanide in their assay of electron transfer may have short-circuited the methyl viologen acceptor, resulting in an underestimation of electron transfer through the  $Q_B$  site.

In past studies, another complication in the determination of the oxidative and reductive path for cyt  $b_{559}$  and the assignment of its functional role was the ambiguity of its stoichiometry in both chloroplasts and PSII-enriched membranes. Using EPR and differential absorbance spectroscopy and employing both internal and external standards for the quantitation of cyt  $b_{559}$ , we have found a 1:1 stoichiometry of cyt  $b_{559}$  per PSII reaction center in BBY-type PSII preparations (Buser et al., 1992).

In this study, we report the first kinetic and yield-per-flash measurements of the photooxidation and dark reduction of cyt  $b_{559}$  obtained with  $O_2$ -evolving PSII-enriched membranes. Using flash-detection optical spectroscopy, we have investigated the dark redox state of cyt  $b_{559}$ , the kinetics of cyt  $b_{559}$  photooxidation during continuous illumination and after a single, saturating flash, and the kinetics of dark reduction of cyt  $b_{559}$ , all as a function of pH. To elucidate the mechanism of oxidation of cyt  $b_{559}$ , we measured the rate of cyt  $b_{559}$  photooxidation and  $S_2$   $Q_A^-$  recombination over the pH 5-8.6 range in DCMU-treated PSII. Finally, in an effort to identify the reductant of cyt  $b_{559}$ , we compared the rate of dark reduction of cyt  $b_{559}$  at different DCMU concentrations in the presence of a reduced plastoquinone pool.

### MATERIALS AND METHODS

PSII-enriched membranes were isolated from market spinach leaves by a modified version (Beck et al., 1985) of the isolation procedure described by Berthold et al. (1981). The Chl concentration was determined by the method of Arnon et al. (1949). Prior to the optical and EPR studies, the PSII-enriched membranes were stored at a Chl concentration of 4-8 mg of Chl/mL in resuspension buffer [15 mM NaCl, 20 mM MES, and 30% (v/v) ethylene glycol at pH 6.0] at 77 K. The sample preparation and spectroscopic data of the NH<sub>2</sub>OH-treated PSII-enriched membranes presented in this paper are discussed in detail in the Materials and Methods and Results of the study by Buser et al. (1990). The yield of photooxidation of cyt  $b_{559}$  in NH<sub>2</sub>OH-treated PSII was reanalyzed, assuming  $175 \pm 25$  Chl molecules per reaction center.

The PSII-enriched membranes exhibited  $O_2$ -evolution activities of 300–400  $\mu$ mol of  $O_2/(mg$  of Chl·h). The ratio of Chl to reaction center was determined by the EPR signal II<sub>s</sub> (Y<sub>D</sub>\*) spin quantitation procedure described by Babcock et al. (1983), with potassium nitrosodisulfonate (Aldrich) as the spin standard. This assay assumes a stoichiometry of one Y<sub>D</sub> per PSII reaction center and the complete oxidation of Y<sub>D</sub> after a 20-min, 273 K illumination period. The continuous illumination period was followed by a 1-min, 273 K dark-

 $<sup>^2</sup>$  Previously, we miscalculated the fraction of cyt  $b_{559}$  photooxidized in NH<sub>2</sub>OH-treated PSII-enriched membranes by a logarithmic factor of 2.303 and by an overestimation of the number of Chl per reaction center in NH<sub>2</sub>OH-treated PSII-enriched membranes (Buser et al., 1990). In the calculations in this paper, we have assumed 175  $\pm$  25 Chl per NH<sub>2</sub>-OH-treated PSII reaction center.

adaption period to allow for the complete reduction of Yz\* prior to the EPR measurement of Y<sub>D</sub> at 15 K. In the PSII preparations used in this study, we have obtained values ranging from 165 to 230 Chl per PSII reaction center.

For the optical studies at varied pH, buffer solutions consisting of 15 mM NaCl, 20 mM buffer (MES for pH 6.0 and 6.5, Hepes for pH 7.0 and 7.5, tricine for pH 8.0, and bicine for pH 8.3 and 8.6), and 30% (v/v) ethylene glycol were prepared and adjusted to the desired pH with NaOH. All samples were used within a 2-h interval of equilibration to 25 °C and dilution with buffer at any given pH to a concentration of 0.02-0.06 mg of Chl/mL. After dilution, the samples were regularly monitored for decay by a measurement of the maximum absorbance change at 560 nm during continuous illumination. Although some variability in the amount of light scattering was observed from one PSII preparation to another, all preparations behaved very similarly and gave rise to the same absorbance changes. After each set of measurements, the Chl concentration and pH of the sample were measured. All absorbance measurements were normalized to a Chl concentration of 0.060 mg of Chl/mL. The concentrations of cyt  $b_{559}$ ,  $Q_A$ , and the PQ pool were calculated from the amplitude of their respective light-induced absorbance changes, the differential extinction coefficient, and the EPRdetermined Chl per PSII ratio for a given sample:  $\Delta \epsilon = 17.5$ mM<sup>-1</sup> cm<sup>-1</sup> at 560-570 nm for cyt  $b_{559}$ (red-ox),  $\Delta \epsilon = 13$ mM<sup>-1</sup> cm<sup>-1</sup> at 325 for  $Q_A^-$ – $Q_A$ , and  $\Delta \epsilon = 13$  mM<sup>-1</sup> cm<sup>-1</sup> at 263 nm for PQH<sub>2</sub>-PQ (Cramer et al., 1986; van Gorkom, 1974b; Amesz, 1973).

Optical absorbance measurements were performed at 25 °C on a flash-detection spectrophotometer similar to that described by Joliot et al. (1980). Continuous illumination was provided by a cluster of four light-emitting diodes (Toshiba TLRA 150C,  $\lambda_{max} = 650$  nm). Saturating actinic flashes were provided by a dye laser (Candela Co. Model SLL-250, 600-ns total duration, dye Oxazine 720,  $\lambda_{max} = 699$  nm). The absorbance changes at a given wavelength were monitored by a series of probe flashes (EG&G Model FX-199U) filtered through the monochromator (HL, Jobin-Yvon). Fluorescence yield measurements of Chl in PSII were measured in the flashdetection spectrophotometer using a xenon actinic flash (EG&G Model FX-199) filtered by an infrared reflecting filter (MTO Atherex TA2), a Corning 4-96, and a Kodak Wratten 34. The fluorescence yield was monitored with probe flashes at 422 nm. The probe flashes used in the absorbance and fluorescence measurements did not contribute significantly to light-driven electron transfer.

The kinetic data of the photooxidation and reduction of cyt b<sub>559</sub> and reoxidation of Q<sub>A</sub> were analyzed with a singleexponential or biexponential curve-fitting routine of the Macintosh Kaleida Graph 2.1.2 program, using a Marquardt algorithm (see text and figure legends for further details).

#### RESULTS

Determination of the Dark Redox State of Cyt b<sub>559</sub> in O<sub>2</sub>-Evolving PSII-Enriched Membranes. To determine the dark redox state of cyt b<sub>559</sub> in O<sub>2</sub>-evolving PSII-enriched membranes, we measured the absorbance change of the  $\alpha$ -band of cyt b<sub>559</sub> in oxidized (ferricyanide) minus reduced (darkadapted, ascorbate-treated, and sodium borohydride-treated) difference spectra, as shown in Figure 1a. The peak at 560 nm and the 10-nm width at half-height of the oxidized minus reduced difference spectra are in good agreement with the peak and width observed for light-induced cyt  $b_{559}$  oxidation in the double-mutant S56 of the green alga Chlorella sorokiniana (Lavergne, 1987) and in NH<sub>2</sub>OH-treated PSIIenriched membranes (Buser et al., 1990).



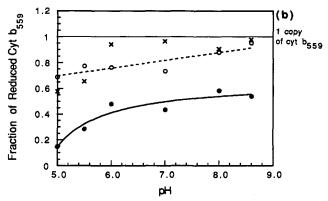



FIGURE 1: (a) Ferricyanide oxidized minus reduced difference spectrum of dark-adapted, untreated BBY-type PSII-enriched membranes (•), after the addition of 2 mM ascorbate (O), and after the further addition of NaBH<sub>4</sub> (solid) (×) at pH 7.0. (b) pH dependence of the dark redox state of cyt b559 in BBY-type PSIIenriched membranes. The measurement in (a) was repeated over the pH range 5.0-8.6. The fraction of reduced cyt b<sub>559</sub> was calculated from the 560-570-nm absorbance difference in dark-adapted (., ), ascorbate- (2 mM) treated (0, - - -), and ascorbate plus NaBH<sub>4</sub>-(solid) treated (×) at each pH [ $\Delta \epsilon$  (560–570 nm) = 17.5 mM<sup>-1</sup> cm<sup>-1</sup> and 190 Chl per reaction center].

Repeating the same measurement as in Figure 1a for the pH range 5.0-8.6, we subsequently calculated the fraction of dark-reduced cyt b<sub>559</sub> from the 560-570-nm absorbance change in dark-adapted, ascorbate-reduced and sodium borohydridereduced PSII samples; the results are shown in Figure 1b. Quantitation of the pH dependence of the dark redox state of cyt  $b_{559}$  indicates that in O<sub>2</sub>-evolving PSII-enriched membranes, devoid of cytochromes f and  $b_6$ , approximately 85% and 46% of cyt  $b_{559}$  are oxidized in the dark at pH 5.0 and 8.6, respectively. In agreement with our previous results (Buser et al., 1992), the fully oxidized (ferricyanide) minus completely reduced (ascorbate plus sodium borohydride) difference spectra for the pH range of 6.0-8.6 correspond to a stoichiometry of one cyt  $b_{559}$  per reaction center. At pH < 6, the addition of sodium borohydride resulted in a significant distortion in the baseline. Therefore, the quantitation at low pH in the presence of sodium borohydride is less reliable. Most likely, cyt  $b_{559}$  is completely reduced by sodium borohydride at pH 5-6 (Figure 1b), since further addition of sodium dithionite did not induce additional reduction (data

Steady-State Photooxidation and Dark Reduction of Cyt b<sub>559</sub> in O<sub>2</sub>-Evolving PSII-Enriched Membranes. Figure 2 shows the visible absorbance spectrum observed after 6 s of continuous illumination of dark-adapted PSII-enriched membranes at pH 8.0 and room temperature. As in Figure 1a, the characteristic peak at 560 nm and the 10-nm width at halfheight in the difference spectrum of Figure 2 are in agreement with previously published spectra for cyt  $b_{559}$ .

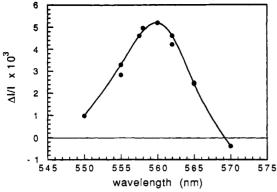



FIGURE 2: Red-visible spectrum of the light-induced absorbance change after 6 s of continuous illumination of dark-adapted PSII-enriched membranes at pH 8.0. At 560 nm, the absorbance change after 6 s of continuous illumination is 90% of the maximum absorbance observed after 21 s of continuous illumination.

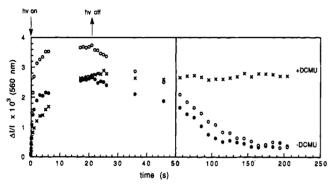
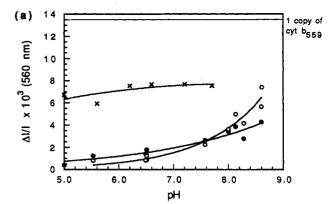




FIGURE 3: Time course of the light-induced absorbance change at 560 nm in dark-adapted ( $\bullet$ ), preilluminated (O), and preilluminated and subsequently DCMU- (20  $\mu$ M) treated ( $\times$ ) PSII-enriched membranes at pH 8.0. Preillumination consisted of 21 s of continuous illumination followed by 3 min of dark adaption prior to the second illumination. DCMU was added at the end of the 3-min dark-adaption period, and the sample was allowed to incubate for 1 min in the dark prior to the measurement.

To characterize the photoinduced reactions of cyt  $b_{559}$ , we first measured the light-induced absorbance changes at 560 nm in dark-adapted and preilluminated PSII-enriched membranes in the absence and presence of DCMU. Figure 3 shows the photooxidation and dark reduction of cyt  $b_{559}$  in darkadapted, preilluminated, and preilluminated and subsequently DCMU-treated PSII samples at pH 8.0. Two significant observations from Figure 3 are the DCMU-induced inhibition of the dark reduction of cyt  $b_{559}$  (discussed later) and the increase in the yield of photooxidation of cyt  $b_{559}$  at pH 8.0 after an initial preillumination period. The latter result suggests that, at basic pH, both the photooxidized and a fraction of the dark-oxidized cyt  $b_{559}$  are reduced during the 3-min dark-adaption period after preillumination. More explicitly, the reducing equivalents on the acceptor side, formed via the oxidation of water during continuous illumination, are in excess with respect to cyt  $b_{559}$  ox after preillumination, and more reduced cyt  $b_{559}$  is formed than was present prior to the first illumination.

The maximum yield of photooxidation of cyt  $b_{559}$  in O<sub>2</sub>-active PSII during continuous illumination, shown in Figure 4a, displays a significant pH dependence, which, in part, reflects the pH dependence of the dark redox state of cyt  $b_{559}$  (Figure 1b). Emphasizing the result shown in Figure 3, a larger fraction of cyt  $b_{559}$  is photooxidized during a second illumination at basic pH (following a 21-s preillumination and 3-min dark adaption period); in contrast, at neutral and acidic pH, a lesser fraction of cyt  $b_{559}$  is photooxidized during a second illumination. This pH-dependent effect on the



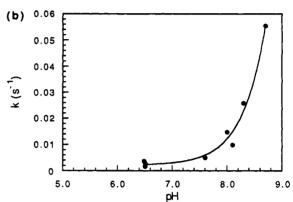
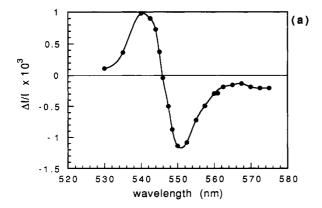




FIGURE 4: (a) pH dependence of the maximum absorbance change observed at 560 nm during continuous illumination of dark-adapted ( ) and preilluminated ( ) PSII-enriched membranes and dark-adapted, NH<sub>2</sub>OH-treated (×) PSII-enriched membranes. The same preillumination was used as in Figure 3. The horizontal solid line at  $\Delta l/l \times 10^3 = 13.4$  corresponds to the expected oxidized minus reduced absorbance difference of one copy of cyt  $b_{559}$  [ $\Delta\epsilon$  (560–570 nm) = 17.5 mM<sup>-1</sup> cm<sup>-1</sup> and 200 Chl per reaction center]. (b) pH dependence of the rate of the dark reduction of cyt  $b_{559}$  in PSII-enriched membranes during the dark period following 21 s of continuous illumination. The kinetics of reduction of photooxidzed cyt  $b_{559}$  were calculated from a single-exponential curve fit to the time course of the absorbance change at 560 nm upon cessation of illumination.

amount of photooxidizable cyt  $b_{559}$  in dark-adapted versus preilluminated samples suggests that the dark reduction pathway of photooxidized cyt  $b_{559}$  is inhibited at acidic pH. Consistent with this interpretation is the pH dependence of the rate of dark reduction of cyt  $b_{559}$  after illumination, shown in Figure 4b. The rate and extent of reduction of photooxidized cyt  $b_{559}$  in the dark decreases toward more acidic pH and appears to be completely blocked below about pH 6. Probably one consequence of this apparent inhibition of reduction of photooxidized cyt  $b_{559}$  at pH  $\leq$  6 is the increasing fraction of dark-oxidized cyt  $b_{559}$  at acidic pH (Figure 1b).

Dark Redox State of  $Q_A$ : Determination of the Extinction Coefficient for the C550 Measurement in PSII. To obtain some insight as to the mechanism of photooxidation of cyt  $b_{559}$ , we subsequently focused our attention on the  $S_1$  to  $S_2$ state transition and studied the extent and rate of photooxidation of cyt  $b_{559}$  during continuous illumination in DCMUtreated PSII or after a single, saturating flash in untreated PSII. Clearly, the extent of photooxidation of cyt  $b_{559}$  depends on its own dark redox state and, in single-flash measurements, on the dark redox state of QA (since reaction centers with reduced Q<sub>A</sub> prior to the flash are photochemically inactive). One significant complication of this measurement, in both the continuous illumination and single-flash experiments, is the spectral overlap of cyt  $b_{559}$  and C550, where the latter is the electrochromic shift of a pheophytin which linearly reflects the concentration of Q<sub>A</sub> (van Gorkom, 1974a,b). Thus, in



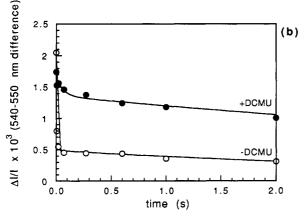



FIGURE 5: (a) Spectrum of the light-induced absorbance change 50 μs after a single, saturating flash in DCMU- (40 μM) and ferricyanide-(150  $\mu$ M) treated PSII-enriched membranes at pH 8.0. (b) Time course of the flash-induced absorbance change of the 540-550-nm difference spectrum of dark-adapted PSII-enriched membranes in the absence (O) and presence (O) of 20  $\mu$ M DCMU. The first data point was collected 500 µs after the actinic flash. The data are fit by a biexponential curve fit, where  $t_{1/2}$  of the slow phase is 4.5 and 7.8 s in the absence and presence of DCMU, respectively (see text for further details).

order to determine the true rate of photooxidation of cyt  $b_{559}$ in O<sub>2</sub>-evolving PSII, the contribution from C550 must be subtracted from the absorbance change at 560 nm.

Figure 5a shows the visible absorbance spectrum observed 50 µs after a single, saturating flash at room temperature in DCMU- and ferricyanide-treated PSII-enriched membranes. The absorbance maximum and minimum at 550 and 540 nm, respectively, are entirely consistent with the spectrum of C550 (van Gorkom, 1974b; Diner & Delosme, 1983). The spectral overlap of cyt  $b_{559}$  and C550 at short time points after the actinic flash is apparent in the comparison of the visible spectrum of cyt  $b_{559}$  (Figure 2) and C550 (Figure 5a). No correction was made for the contribution of C550 in Figures 2 and 4 owing to its small amplitude at 560 nm compared to that of cyt  $b_{559}$ .

In order to quantitate the dark redox state of QA, we subsequently determined the differential extinction coefficient for the 540-550-nm difference spectrum of C550. To calculate  $\Delta\Delta\epsilon$  (540–550 nm), we induced the maximum photoreduction of QA by using 15 flashes (18 Hz) in PSII samples treated with 30  $\mu$ M DCMU (to block Q<sub>A</sub> to Q<sub>B</sub> electron transfer) and 2 mM NH<sub>2</sub>OH (to block Q<sub>A</sub> oxidation by charge recombination). The absorbance change was measured for the 540-550-nm difference spectrum and at 325 nm (the reference wavelength of the Q<sub>A</sub>-Q<sub>A</sub> spectrum). The data were corrected for particle flattening [by the method of Duysens (1956) and Pulles et al. (1976)]. We have found a differential correction factor for particle flattening of 1.01 at 550 and 540 nm and

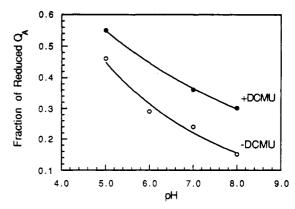



FIGURE 6: Fraction of reduced QA in dark-adapted PSII-enriched membranes in the absence (O) and presence ( $\bullet$ ) of 20  $\mu$ M DCMU. The amount of  $Q_A^-$  was calculated from the value of  $\Delta l/l$  of the 540-550-nm difference spectrum at 500  $\mu$ s after the saturating flash  $[\Delta \Delta \epsilon (540-550 \text{ nm}) = 3.4 \text{ mM}^{-1} \text{ cm}^{-1} \text{ and } 190 \text{ Chl per reaction}]$ center].

a factor of 1.08 and 325 nm in BBY-type PSII-enriched membranes [for further details see Buser et al. (1992)]. Using an extinction coefficient of 13 mM<sup>-1</sup> cm<sup>-1</sup> for the reduction of QA at 325 nm (van Gorkom, 1974b), we have calculated a differential extinction coefficient of 3.4 mM<sup>-1</sup> cm<sup>-1</sup> (540-550 nm) for the absorbance of C550. Our value of  $\Delta\Delta\epsilon$  (540– 550 nm) is in agreement with the previously reported reducedminus-oxidized absorbance difference spectrum (corrected for particle flattening) of QA in Tris-washed, BBY-type PSII, where  $\Delta \Delta \epsilon$  (540-550 nm)  $\approx 3.7 \text{ mM}^{-1} \text{ cm}^{-1}$  (Dekker et al., 1984).

To determine the dark redox state of QA and the rate of reoxidation of photoreduced QA, we measured the photoinduced absorbance change of C550 after one saturating flash in untreated and DCMU-treated PSII (Figure 5b). A less than 2% decrease in the absorbance change of the 540-550nm difference is observed between 50 and 500  $\mu$ s after the actinic flash because of the slowed Q<sub>A</sub>/Q<sub>B</sub> electron transfer in BBY-type membranes [reviewed by Diner et al. (1991)]. The initial amplitude of the absorbance change of C550 (500 μs after the actinic flash) is attributed to the reaction centers in which QA is oxidized in the dark. Consistent with the mechanism of DCMU binding, a decrease in the amplitude of the 500- $\mu$ s time point is observed upon addition of DCMU, corresponding to an increase in the fraction of dark-reduced Q<sub>A</sub> (Lavergne & Etienne, 1980). The decay kinetics of photoreduced Q<sub>A</sub> in Figure 5b are at least biexponential, both in the absence and in the presence of DCMU. In DCMUtreated PSII, the decay of the C550 absorbance change corresponds to recombination of the oxidized donor with O<sub>A</sub><sup>-</sup>. Assuming a model in which  $S_n/Y_Z/P680$  are in equilibrium (Scheme I), the reoxidation of Q<sub>A</sub>- occurs via charge recombination of S<sub>2</sub> Q<sub>A</sub>-, Y<sub>Z</sub>• Q<sub>A</sub>-, and P680+ Q<sub>A</sub>-. Since the  $t_{1/2}$  values of P680<sup>+</sup> Q<sub>A</sub><sup>-</sup> and Y<sub>Z</sub><sup>\*</sup> Q<sub>A</sub><sup>-</sup> recombination are  $\approx$ 900  $\mu$ s and 10-400 ms (pH 5.0-7.5), respectively (Metz et al., 1989; Buser et al., 1990; Diner, unpublished results; Dekker et al., 1984), we assign the fast phase of the biexponential fit to the data for DCMU-treated PSII in Figure 5b to P680+ Q<sub>A</sub><sup>-</sup> and Y<sub>Z</sub>\* Q<sub>A</sub><sup>-</sup> recombinations and the slow phase to S<sub>2</sub> Q<sub>A</sub>- recombination.

Repeating the same type of measurement of C550 as shown in Figure 5b over the pH range 5-8, we subsequently determined the pH dependence of the dark redox state of QA and of the rate of Q<sub>A</sub> reoxidation. Figure 6 shows the pH dependence of the amount of dark-reduced QA in untreated and DCMU-treated PSII-enriched membranes; in agreement with data from others (Lavergne & Etienne, 1980), we observe

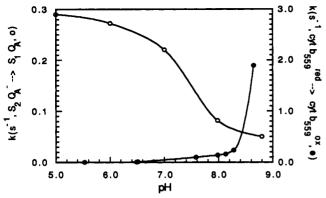



FIGURE 7: pH dependence of the rate of photooxidation of cyt  $b_{559}$  ( $\bullet$ ) in DCMU- (40  $\mu$ M) treated PSII-enriched membranes during continuous illumination. For comparison, the kinetics for S<sub>2</sub> Q<sub>A</sub>-charge recombination (O) are also shown for DCMU- (20  $\mu$ M) treated PSII samples. See text for further details concerning rate determinations.

an increase in the amount of dark-reduced  $Q_A$  with increasing acidity and upon addition of DCMU. The open circles of Figure 7 show the pH dependence of the rate of the slow phase of the biexponential fit to the C550 absorbance change in DCMU-treated PSII, where we have assigned the slow phase of  $Q_A^-$  recoxidation to  $S_2$   $Q_A^-$  recombination. Using fluorescence spectroscopy, Robinson and Crofts (1984) have found the same pH trend but a somewhat slower overall rate (by about a factor of 2) for  $S_2$   $Q_A^-$  recombination in pea chloroplasts.

Photooxidation of Cyt  $b_{559}$  during the  $S_1$ - to  $S_2$ -State Transition in O<sub>2</sub>-Evolving PSII. With this information of the dark redox state and kinetics of QA, we can now begin to determine and analyze the rates and yields of photooxidation of cyt  $b_{559}$  observed during continuous illumination in DCMUtreated PSII and after a single, saturating flash in untreated PSII. Focusing on the data collected during illumination in Figure 3, we find that the time course of the absorbance change at 560 nm in DCMU-treated PSII-enriched membranes is not well fit by a single-exponential curve. Comparison of the absorbance change at 560 nm seen in the C550 spectrum (Figure 5a) and the cyt  $b_{559}$  time course (Figure 3) indicates that the reduction of Q<sub>A</sub>, as reflected by C550, contributes approximately 10% to the initial rise in the absorbance change at 560 nm (pH 8.0). Using these results to deconvolute the contribution of C550, we have fit the time course of the absorbance change at 560 nm to a biexponential curve, where the initial fast phase (C550) was fixed to 10% of the total absorbance change at 560 nm. The second, slower phase (90% of the total absorbance change at 560 nm) was assigned to the photooxidation of cyt  $b_{559}$ . Figure 7 compares the pH dependence of the rate of photooxidation of cyt  $b_{559}$  during continuous illumination to the rate of S<sub>2</sub> Q<sub>A</sub><sup>-</sup> recombination after a single flash in DCMU-treated PSII-enriched membranes. The maximum yield of photooxidation of cyt  $b_{559}$ , calculated from the total absorbance change at 560 nm, is tabulated as a function of pH in Table I. The rate (Figure 7) and extent (Table I) of photooxidation of cyt  $b_{559}$  during continuous illumination is small at pH < 6.0 and increases toward more basic pH, with a significant increase in the rate of photooxidation above pH 8.3.

Two significant observations from the continuous illumination data are that the extent of photooxidation of cyt  $b_{559}$  increases toward more basic pH and that C550 contributes to the absorbance change at 560 nm. With this information, we subsequently studied the yield of photooxidation of cyt  $b_{559}$  per saturating flash in O<sub>2</sub>-evolving PSII-enriched mem-

branes. Figure 8 presents a graphic description of the deconvolution method used to subtract the C550 contribution from the photooxidation kinetics of cyt  $b_{559}$  after one saturating flash at pH 8.0 (see legend to Figure 8 for further details). The deconvoluted kinetics of photooxidation of cyt  $b_{559}$  are fit well by a single-exponential curve, with  $t_{1/2} = 540 \pm 90$ ms. The absolute absorbance change (shown in further detail in the inset of Figure 8) corresponds to the photooxidation of 4.7% of cyt  $b_{559}$ ; under the conditions of this measurement (pH 8.0), 42% of cyt  $b_{559}$  is oxidized and 15% of  $Q_A$  is reduced in the dark prior to the actinic flash. As expected from our data of the photooxidation of cyt b<sub>559</sub> observed during continuous illumination (Figures 4a and 7), we observe a decrease in the yield of photooxidation of cyt  $b_{559}$  after a single flash toward more acidic pH. Using the same deconvolution procedure as just described, we have found 2.5% of cyt b<sub>559</sub> photooxidized after a single, saturating flash at pH 6.0, with  $t_{1/2} = 760 \pm 260$  ms (data not shown). Of mechanistic importance, we find an increase in the yield per flash of photooxidation of cyt  $b_{559}$  toward basic pH concurrent with an increase in the lifetime of the S<sub>2</sub> Q<sub>A</sub> charge separation (Figure 7). Assuming P680<sup>+</sup> is the oxidant to cyt  $b_{559}$  as shown in Scheme I, then this observation implies that P680<sup>+</sup> is in equilibrium with Yz\* and the Mn complex and that the rate and extent of photooxidation of cyt  $b_{559}$  are determined by the lifetime of the oxidizing equivalent on  $S_n/Y_Z/P680$ .

One essential question at this point is whether the observed photooxidation of cyt  $b_{559}$  originates from  $O_2$ -active or -inactive reaction centers. A comparison of the kinetics of cvt b<sub>559</sub> photooxidation in untreated and NH2OH-treated PSIIenriched membranes reveals significant differences in both the yields and rates of photooxidation in the presence and absence of the O2-evolving complex. Figure 4a shows the pH dependence of the maximum yield of cyt  $b_{559}$  photooxidation observed during continuous illumination in both O2-active and -inactive PSII samples. In contrast to the O<sub>2</sub>-active PSII samples, the maximum yield of photooxidation of cvt  $b_{559}$  in O2-inactive PSII-enriched membranes is virtually pH independent, and approximately 50% of cyt  $b_{559}$  is photooxidized in NH<sub>2</sub>OH-treated samples during continuous illumination (in centers with  $\approx$ 20% of dark-oxidized cyt  $b_{559}$  and  $\approx$ 52-64% dark-reduced Q<sub>A</sub> at pH 6.2). Furthermore, the yield per flash of cyt  $b_{559}$  photooxidation shows an opposite trend in untreated versus NH2OH-treated PSII-enriched membranes over the pH range 5.0-8.0 (Table I). Not only are different yields of photooxidation observed, but the rate cvt  $b_{550}$ photooxidation is also significantly different in O2-evolving versus non-O2-evolving PSII preparations. The length of illumination necessary to obtain the maximum yield of photooxidation of cyt  $b_{559}$  in O<sub>2</sub>-active and -inactive PSII samples is 21 and 1.8 s, respectively. Also, the rise time of the photooxidation of cyt  $b_{559}$  after a single flash is slower in O<sub>2</sub>-evolving PSII preparations than in NH<sub>2</sub>OH-treated samples:  $t_{1/2} = 760 \pm 260$  ms (pH 6.0, data not shown) and  $540 \pm 90$  ms (pH 8.0, Figure 8) in O<sub>2</sub>-active PSII samples and  $t_{1/2} = 10$  ms (pH 5.0) and 13 ms (pH 6.0) in NH<sub>2</sub>OHtreated PSII samples (Buser et al., 1990). These kinetic differences suggest that the flash-induced absorbance change at 560 nm in Figure 8 arises from the photooxidation of cyt  $b_{559}$  in reaction centers which form the  $S_2$   $Q_A^-$  (or  $S_2$   $Q_B^-$ ) charge separation. Although O<sub>2</sub> evolution is known to be inhibited at basic pH in BBY-type PSII, Damoder and Dismukes (1984) have found the rate of formation and the yield of the S<sub>2</sub> state produced by single-flash excitation at room temperature or by continuous illumination at 200 K to be independent of pH over the pH range 5.5-8.5. It should

| T- | 1.1 | _ | 1 |
|----|-----|---|---|
| Ta | .DI | c | 1 |

|        | $O_2$ -Active PSII $\Delta I/I_{\rm max} \times 10^6 (560 \text{ nm})^b$ |                |                |                                                 |                      |       |
|--------|--------------------------------------------------------------------------|----------------|----------------|-------------------------------------------------|----------------------|-------|
|        | 8 s after 1 flash (-DCMU)                                                | cont illum     |                |                                                 | % QA- in the darke,e |       |
| $pH^a$ |                                                                          | -DCMU          | +DCMU          | % cyt $b_{559}^{ox}$ in the dark <sup>c,d</sup> | -DCMU                | +DCMU |
| 5.0    |                                                                          |                |                | 85                                              | 46                   | 55    |
| 5.5    |                                                                          | $1221 \pm 369$ | $670 \pm 47$   | 72                                              |                      |       |
| 6.0    | $332 \pm 69$                                                             |                |                | 52                                              | 29                   |       |
| 6.5    |                                                                          | $1558 \pm 355$ | $1134 \pm 169$ |                                                 |                      |       |
| 7.0    |                                                                          |                |                | 57                                              | 24                   | 36    |
| 7.5    |                                                                          | $2628 \pm 647$ | 2559           |                                                 |                      |       |
| 8.0    | $630 \pm 165$                                                            | $3703 \pm 328$ | $2600 \pm 417$ | 42                                              | 15                   | 30    |
| 8.5    |                                                                          | 4261           | $4332 \pm 516$ | 46                                              |                      |       |

O2-Inactive, NH2OH-Treated PSII  $\Delta I/I_{\rm max} \times 10^6 (560 \text{ nm})$ 

| / 、                         | •                                                                                           |                                                                                                                                                                                          |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 49 ms after 1 flash (-DCMU) | cont illum (-DCMU)                                                                          | % QA- in the darks (-DCMU)                                                                                                                                                               |  |  |
| 828 ± 122                   | 6747 ± 23                                                                                   | 43–55                                                                                                                                                                                    |  |  |
| $625 \pm 135$               | $6145 \pm 63$                                                                               |                                                                                                                                                                                          |  |  |
| $627 \pm 156$               | $7501 \pm 24$                                                                               | 52–64                                                                                                                                                                                    |  |  |
| $487 \pm 193$               | $7561 \pm 24$                                                                               |                                                                                                                                                                                          |  |  |
| $408 \pm 99$                | $7656 \pm 98$                                                                               |                                                                                                                                                                                          |  |  |
| $289 \pm 60$                | $7518 \pm 90$                                                                               |                                                                                                                                                                                          |  |  |
|                             | 49 ms after 1 flash (-DCMU)<br>828 ± 122<br>625 ± 135<br>627 ± 156<br>487 ± 193<br>408 ± 99 | 49 ms after 1 flash (-DCMU)cont illum (-DCMU) $828 \pm 122$ $6747 \pm 23$ $625 \pm 135$ $6145 \pm 63$ $627 \pm 156$ $7501 \pm 24$ $487 \pm 193$ $7561 \pm 24$ $408 \pm 99$ $7656 \pm 98$ |  |  |

<sup>a</sup> The pH for these data is rounded to the nearest half pH unit. <sup>b</sup> 200 Chl/RC. <sup>c</sup> 190 Chl/RC. <sup>d</sup> The fraction of oxidized cyt b<sub>559</sub> in dark-adapted PSII is taken from the data shown in Figure 1b. The fraction of reduced QA in dark-adapted PSII in the absence and presence of DCMU is taken from the data shown in Figure 6. The data for O2-inactive, NH2OH-treated PSII were taken from Buser et al. (1990) and corrected according to footnote 2 of this paper. 8 The fraction of reduced QA in dark-adapted, NH2OH-treated PSII in the absence and presence of DCMU is taken from the data in Figure 6 in Buser et al. (1990), assuming  $175 \pm 25$  chlorophylls per reaction center and  $\Delta \Delta \epsilon$  (540-550 nm) = 3.4 mM<sup>-1</sup> cm<sup>-1</sup> for the measurement of C550.

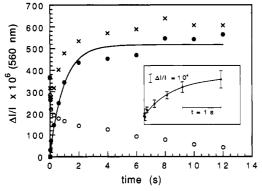



FIGURE 8: Time course of absorbance changes at 560 and at 550-540 nm. This figure provides a graphic description of the deconvolution method used to subtract the C550 contribution from the photooxidation kinetics of cyt  $b_{559}$  after a single, saturating flash in untreated PSII-enriched membranes (200 Chl/reaction center). The time course of the absorbance change at 560 nm (X) was corrected for the C550 contribution by scaling the 550-540-nm difference spectrum (O) to the initial time point at 50 µs after the actinic flash in the 560-nm difference spectrum. The resulting difference kinetics for cyt  $b_{559}$  (ullet), shown in further detail in the inset, are the average of seven experiments and are fit by a single-exponential curve with  $t_{1/2} = 540 \text{ ms} \pm 90 \text{ ms}.$ 

be noted that all of these measurements are made in the presence of exogenous quinones (such as DCBQ or PPBQ), and it is not clear whether the pH dependence of O2 evolution is due to the pH dependence of the O2-evolving complex or to the electron-acceptor side (and the effectiveness of exogenous quinones to function as an electron acceptor at high pH). On the basis of these arguments, we conclude that the 4.7% photooxidation of cyt  $b_{559}$  observed in O<sub>2</sub>-active PSII samples after a single flash at pH 8.0 occurs upon formation of the  $S_2$   $Q_A^-$  (or  $S_2$   $Q_B^-$ ) charge separation.

Identification of the Reductant to Photooxidized Cyt b559 in O2-Evolving PSII-Enriched Membranes. In our initial characterization of cyt  $b_{559}$  at pH 8.0, we observed not only the photooxidation but also the pH-dependent dark reduction of photooxidized cyt b<sub>559</sub> in untreated O<sub>2</sub>-evolving PSII (Figure 3). Clearly, the reducing equivalent for the reduction of oxidized cyt  $b_{559}$  must come from the electron-acceptor side of PSII; however, still unanswered is the identification of the reductant source, i.e., reduced QA, QB, or plastoquinol of the PQ pool. One significant observation from Figure 3 is the inhibition of the dark reduction of oxidized cyt  $b_{559}$  in the presence of DCMU. To further investigate this inhibition by DCMU, we measured both the dark reduction of cyt  $b_{559}$  and the photoreduction of the PQ pool at DCMU concentrations of 0, 3, and 10  $\mu$ M. As before, the dark reduction of cyt  $b_{559}$ was monitored by the absorbance change at 560 nm after a period of continuous illumination. The photoreduction of the PQ pool was measured by the absorbance change at 265 nm, the minimum of the PQH<sub>2</sub> minus PQ difference spectrum. [We observed a red shift from 263 to 265 nm in the position of the minimum but the same width at half-height as compared to the PQH2 minus PQ difference spectrum reported by Stiehl and Witt (1968) for spinach chloroplasts; data not shown.]

As shown in Figure 9a, the dark reduction of cyt  $b_{559}$  is significantly inhibited at 3 µM DCMU and completely blocked at 10  $\mu$ M DCMU. We have determined an  $I_{50}$  of 0.19  $\mu$ M (pH 8.0) for DCMU inhibition of the rate of dark reduction of photooxidized cyt  $b_{559}$  (data not shown). In contrast, the extent of reduction of the PQ pool is equivalent for DCMU concentrations of 0 and 3  $\mu$ M and only somewhat inhibited at  $10 \,\mu\text{M}$  DCMU, as seen in Figure 9b. In order to quantitate the PQ pool, we repeated the measurement in Figure 9b in a sample containing 40 µM DCMU, a concentration which completely blocks QA to QB electron transfer. Correcting the observed absorbance change for the fraction of QA which is reduced by electron transfer from Q<sub>B</sub><sup>-</sup> to Q<sub>A</sub> upon addition of DCMU (using the data in Figure 6) and correcting for particle flattening (see legend to Figure 9b), we find that the equivalent of 1 quinone, i.e., QA, is reduced in the presence of 40  $\mu$ M DCMU (data not shown). Subtracting the contribution from Q<sub>A</sub> in the measurement of Figure 9b, we find that 1.3 quinones are reduced during continuous illumination at concentrations of 0 and 3  $\mu$ M DCMU and 0.65 quinone is reduced at 10  $\mu$ M DCMU [ $\Delta \epsilon$  (265 nm) = 13

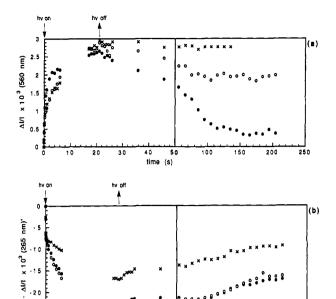



FIGURE 9: (a) Time course of the light-induced absorbance change at 560 nm in dark-adapted PSII treated with 0 ( $\bullet$ ), 3 (O), and 10  $\mu$ M (×) DCMU at pH 8.0. (b) Time course of the light-induced absorbance change at 265 nm in dark-adapted PSII treated with 0 ( $\bullet$ ), 3 (O), and 10  $\mu$ M (×) DCMU at pH 8.0. The ratio of Chl per reaction center was 190. The prime on  $\Delta l/l$  (265 nm)' denotes a correction for particle flattening, according to the method of Duysens (1956) and Pulles et al. (1976). We have determined a differential correction factor of 1.11 for the absorbance change at 265 nm in BBY-type PSII-enriched membranes [see Buser et al. (1992) for further details].

mM<sup>-1</sup> cm<sup>-1</sup>; Stiehl & Witt, 1968; Amesz, 1973]. In terms of Figure 9b, the initial fast absorbance change corresponds to the reduction of  $Q_A$  and the subsequent slower absorbance change observed during continuous illumination is due to the reduction of  $Q_B$  and a small PQ pool. The slow reduction of  $Q_B$  and the PQ pool may reflect either some modification of the  $Q_B$  site or a reduced PQ pool size in our BBY-type PSII preparations. Immediately after illumination, we observe a fast phase  $(t_{1/2} \approx 1-5 \text{ s})$  in the recovery of the absorbance change at 265 nm (Figure 9b), most likely due to the reoxidation of a fraction of  $Q_A^-$ .

As  $Q_A$  is the most reduced at  $10 \,\mu\mathrm{M}$  DCMU while the rate of reduction of cyt  $b_{559}$  is lowered, it is clear that  $Q_A^-$  is not the reductant of cyt  $b_{559}^{\mathrm{ox}}$ . Furthermore, since the extent of the reduction of  $Q_B$  and the PQ pool is the same after illumination at 0 and 3  $\mu\mathrm{M}$  DCMU while reduction of cyt  $b_{559}$  is slower at the latter concentration, it is unlikely that PQH<sub>2</sub> of the PQ pool is the direct source of reductant for the reduction of cyt  $b_{559}^{\mathrm{ox}}$ . At  $10 \,\mu\mathrm{M}$  DCMU, there is a 50% inhibition of PQ reduction and the rate of cyt  $b_{559}$  reduction is significantly slowed. Altogether, these results are most consistent with reduced  $Q_B [Q_B^{-\bullet}, Q_B^{-\bullet}(H^+), Q_B^{2-}, Q_BH^-, \text{ or } Q_BH_2]$  being the reductant to oxidized cyt  $b_{559}$  in  $O_2$ -evolving PSII-enriched membranes.

The interaction of cyt  $b_{559}$  and the  $Q_B$  site was further investigated by an acid-jump experiment, in which a drop in pH from 8.5 to 4.9 was induced by the addition of succinic acid in the absence and presence of DCMU (Figure 10). Because of the drift in the baseline induced by the addition of succinic acid, the acid-induced changes ( $\pm$ DCMU) at 560 nm were compared by taking the difference between the  $\Delta I/I$  (560 nm) and that defined by a line connecting the  $\Delta I/I$  at 555 and 565 nm (the wavelengths at half-height for the redvisible spectrum of cyt  $b_{559}$ ). Similar experiments have been

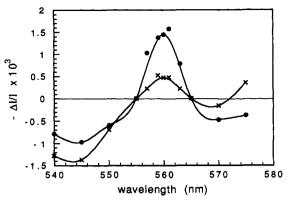



FIGURE 10: Alkaline minus acid difference spectrum measured 3 min after a pH jump from 8.5 to 4.9 in the absence ( $\bullet$ ) and presence ( $\times$ ) of 40  $\mu$ M DCMU in PSII-enriched membranes (230 Chl per reaction center). The pH jump was achieved by the addition of 0.6 mM succinic acid to the sample in the absence of mediators.

reported before (Cramer et al., 1975; Horton et al., 1976); however, in contrast to the earlier studies, our measurements are made in the absence of redox mediators (such as ferricyanide/ferrocyanide), so that acid-induced changes of dark redox states directly represent changes of dark equilibria within PSII. In agreement with the pH dependence of the dark redox state of cyt  $b_{559}$  (Figure 1b), we observe the oxidation of  $\approx 16\%$  of cyt  $b_{559}$  at 3 min after dark acidification in the absence of DCMU. Furthermore, the acid-induced oxidation of cyt  $b_{559}$  is reversible upon addition of sodium hydroxide (data not shown). These results indicate that the pH dependence of the dark redox state of cyt  $b_{559}$ , shown in Figure 1b, is not just an artifact of the dark-adaption period.

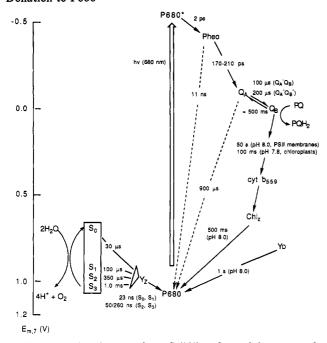
If, as we suggest, reduced Q<sub>B</sub> is the direct source of reductant to cyt  $b_{559}$  ox, then we expect the binding of DCMU to modulate the acid-induced oxidation of cyt  $b_{559}$  by displacement of the endogenous occupant to the Q<sub>B</sub> site (quinone, semiquinone, or quinol). A comparison of the absorbance difference between the amplitude at half-height (555-565 nm) and the amplitude at the maximum (560 nm) for cyt  $b_{559}$  in the absence and presence of 40 µM DCMU in Figure 10 indicates a 67% inhibition of the acid-induced oxidation of cyt  $b_{559}$  at 3 min after the acid jump. This result provides further support for a direct interaction between cyt b559 and QB. Assuming a dark equilibrium between cyt  $b_{559}$  and  $Q_B$ , one might expect the complete inhibition of the acid-induced oxidation of cyt  $b_{559}$  in the presence of excess DCMU. However, DCMU is found to only partially inhibit the oxidation of cyt  $b_{559}$  at early times after the addition of the acid (t = 3 min, Figure 10) and a slow increase in the extent of acid-induced oxidation is observed at longer timepoints. At 8 min after the addition of the acid, the oxidation of  $\approx 31\%$  and  $\approx 20\%$  of cyt  $b_{559}$  is observed in the absence and presence of DCMU (data not shown). The residual acid-induced oxidation of cyt  $b_{559}$  in the presence of DCMU may be explained by (a) a fraction of Q<sub>B</sub> sites which do not bind DCMU effectively, (b) a thermodynamic change in the equilibrium state of the acceptor side induced by binding of DCMU, and/or (c) a kinetic effect involving competitive binding of DCMU and the quinone or semiquinone. The lattermost explanation appears most plausible, since the dissociation constant of DCMU (estimated from the  $I_{50}$  for the DCMU inhibition of the variable fluorescence, data not shown) is significantly greater in PSIIenriched membranes than in chloroplasts (Stein et al., 1984), which may allow for competitive DCMU and semiquinone binding to the Q<sub>B</sub> site in PSII samples. In any case, the main point of Figure 10 is that, in the absence of exogenous mediators, DCMU affects the acid-induced oxidation of cyt  $b_{559}$ , suggesting a dark equilibrium between cyt  $b_{559}$  and  $Q_B$ in untreated PSII-enriched membranes.

#### DISCUSSION

Several earlier reports have suggested cyt  $b_{559}$  mediates a cyclic pathway for electron transfer around PSII (Cramer & Whitmarsh, 1977; Heber et al., 1979; Arnon & Tang, 1988; Thompson & Brudvig, 1988). However, the paths of its oxidation and reduction have remained controversial, in part, due to the lack of kinetic characterization of cyt  $b_{559}$  under physiological conditions. We previously proposed a model for electron transfer in PSII (Scheme I) based on data pertaining to the photooxidation of cyt b<sub>559</sub> and Y<sub>D</sub> in O<sub>2</sub>inactive PSII-enriched membranes (Buser et al., 1990). Since cyt b559 and YD are efficiently photooxidized in both Mndepleted PSII-enriched membranes and in a mutant of Synechocystis PC 6803 lacking Yz (Metz et al., 1989; Diner, unpublished results), we favor a model in which P680<sup>+</sup> is the direct oxidant of cyt  $b_{559}$  and  $Y_D$ . The important aspect of this model is that  $S_{n+1}$ ,  $Y_{Z^{\bullet}}$ , and P680<sup>+</sup> are in redox equilibrium and cyt b<sub>559</sub> and Y<sub>D</sub> are oxidized via P680<sup>+</sup>. This model predicts that the photooxidation of cyt  $b_{559}$  and  $Y_D$  occurs within the lifetime of the oxidizing equivalent on the donor side of the PSII reaction center. Consistent with this prediction, the rates of photooxidation of cyt  $b_{559}$  after a single flash (Figure 8) and of S<sub>2</sub> Q<sub>A</sub><sup>-</sup> recombination (Figure 7) are of the same order of magnitude. As expected, when the two rates cross over and the rate of cyt b559 oxidation becomes faster than the rate of S<sub>2</sub> Q<sub>A</sub> recombination, then the extent of photooxidation of cyt  $b_{559}$  increases significantly. Similarly, the rate of photooxidation of YD is also of the same order of magnitude, and the rate and yield of the photooxidation of YD exhibit the same trend in pH as the photooxidation of cyt  $b_{559}$  $(t_{1/2} = 10 \text{ and } 1 \text{ s at pH 6 and 8, respectively; Vass & Styring,}$ 1991).

Whereas we have found the yield and rate of photooxidation of cyt b<sub>559</sub> in O<sub>2</sub>-evolving PSII-enriched membranes to increase toward more basic pH (Figures 4a and 7), Horton and Cramer (1976) have observed an opposite trend in chloroplast preparations, where the yield of photooxidation of cyt  $b_{559}$ increases with increasing acidity. However, it is difficult to compare our results from PSII-enriched membranes to their results in chloroplasts due to the inherent difference in the two preparations and the very different experimental conditions. Two factors which complicate such pH measurements in thylakoid or chloroplast preparations are the membrane potential and the buffering capacity of the membrane itself, such that the pH inside the thylakoid vesicle is most likely not the same as the pH of the buffer. Another significant problem in optical measurements of cyt  $b_{559}$  is the deconvolution of absorbance changes of cytochromes f and  $b_6$  from the  $\alpha$ -band of cyt  $b_{559}$  in thylakoids (Buser et al., 1992).

In the dark period following continuous illumination, we have observed the dark rereduction of photooxidized cyt  $b_{559}$ , where the extent and rate of reduction decreases with decreasing pH and appears to be inhibited at pH < 6.4 (Figure 4b). Although the dark reduction kinetics of cyt  $b_{559}$  have not been previously reported in PSII-enriched membranes, Whitmarsh and Cramer (1977) have reported the photoreduction of cyt b559 in chloroplasts. Similar to our results in PSIIenriched membranes, the kinetics of photoreduction of cyt  $b_{559}$  decrease toward more acidic pH in chloroplasts. These authors report a plateau in the maximum of the extent of photoreduction of cyt b<sub>559</sub> between pH 6.5 and 8.0 and a maximum in the rate at pH 8.5 (Whitmarsh & Cramer, 1978). Although the reduction kinetics of cyt  $b_{559}$  exhibit a similar


pH dependence in chloroplast and PSII-enriched membranes, the rate of reduction is almost 3 orders of magnitude faster in chloroplasts ( $t_{1/2} = 100 \pm 10$  ms at pH 7.8; Whitmarsh & Cramer, 1977) than in BBY-type PSII ( $t_{1/2} \approx 70$  s at pH 7.8; this study). The difference in the rate of cyt  $b_{559}$  reduction may be attributed to a higher concentration of quinol and possibly a more intact Q<sub>B</sub> site in the chloroplast preparation as compared to the BBY-PSII preparation.

Whitmarsh and Cramer (1978) also investigated the reductive path for cyt  $b_{559}$  by comparing the extent of photoreduction of cyt  $b_{559}$  to the steady-state relative Chl fluorescence yield as a function of DCMU. In their study, the increase in the fluorescence yield at increasing concentrations of DCMU was directly correlated to the number of blocked PSII reaction centers. Nearly 7 times as much DCMU was found necessary to inhibit 50% of the photoreduction of cyt  $b_{559}$  (1.5  $\mu$ M) as was needed to cause a 50% increase in the maximum fluorescence yield (0.22  $\mu$ M). On the basis of these results, Whitmarsh and Cramer (1978) concluded that cyt b<sub>559</sub> was photoreduced after an electron-sharing pool in chloroplasts. Using a similar somewhat more direct approach, we measured the dark reduction of cyt  $b_{559}$  (Figure 9a) and the photoreduction of the PQ pool (Figure 9b) as a function of DCMU concentration in PSII-enriched membranes at pH 8.0. Our results show that, even at low DCMU concentrations (3  $\mu$ M), the reduction path for oxidized cyt  $b_{559}$  is largely inhibited while the PQ pool can still be completely reduced during continuous illumination (Figure 9)—suggesting that neither the reduced PQ pool nor Q<sub>A</sub> is the direct reductant to oxidized cyt  $b_{559}$ . Collectively, our data are most consistent with reduced  $Q_B$  as the direct reductant source to cyt  $b_{559}^{ox}$ :

cyt 
$$b_{559}^{\text{ox}} Q_B H_2 \stackrel{K_{eq}}{\rightleftharpoons} \text{cyt } b_{559}^{\text{red}} Q_B^{-\bullet} (H^+) + H^+$$
 (1)

where, in the proposed equilibria,  $K_{eq} > 1$  at basic pH and <1 at acidic pH. Both the pH dependence of the dark redox state of cyt  $b_{559}$  (Figure 1b) and  $Q_B$  (Figure 6 and text), as well as the acid-induced oxidation of cyt  $b_{559}$  (Figure 10), support this equilibrium. The measurement in Figure 9 also tends to support the equilibrium in (1), since the chargeseparated state immediately after continuous illumination is cyt b<sub>559</sub> ox Q<sub>B</sub>H<sub>2</sub>. Although we cannot exclude the reduction of cyt  $b_{559}^{\text{ox}}$  by  $Q_{\text{B}}^{-}$  from our experimental data, we can obtain more insight from a comparison of the midpoint potentials of cyt  $b_{559}^{\text{ox}}$ /cyt  $b_{559}^{\text{red}}$  to the redox couples  $Q_B/Q_B^{-\bullet}$ , Q<sub>B</sub>-•/Q<sub>B</sub>H<sub>2</sub>, and Q<sub>B</sub>/Q<sub>B</sub>H<sub>2</sub>. Taking at least 45% of the cyt  $b_{559}$  to be high potential and pH independent ( $E_{m,pH-indep}$  = 380 mV; Ortega et al., 1988; Thompson et al., 1989), we find that the midpoint potentials of both  $Q_B/Q_{B^-}$  and  $Q_B/Q_BH_2$ are more negative than that of high-potential cyt  $b_{559}^{ox}$ /cyt b<sub>559</sub>red over the pH range 4-9 [for review of acceptor-side midpoint potentials see Diner et al. (1991)]. Taking into account a p $K_a$  of 7.9 for  $Q_{B^{-}}/Q_{B^{-}}(H^+)$  (Robinson & Crofts, 1984), only the midpoint potential of  $Q_B^{-*}/Q_BH_2$  ( $E_{m,7}$ 290 mV) is more positive at acidic pH (e.g.,  $E_{m,4.9} \approx 420$  mV) and more negative at basic pH (e.g.,  $E_{m,8.5} \approx 170$  mV) than that of high-potential cyt  $b_{559}^{\text{ox}}/\text{cyt}$   $b_{559}^{\text{red}}$  with a cross-over point between pH 5 and 6. From these thermodynamic considerations, only the redox couple Q<sub>B</sub><sup>-</sup> •/Q<sub>B</sub>H<sub>2</sub> may be in redox equilibrium with high-potential cyt  $b_{559}^{\text{ox}}$ /cyt  $b_{559}^{\text{red}}$ , such that  $Q_BH_2$  can reduce cyt  $b_{559}^{ox}$  only at elevated pH. Such reduction would be enhanced further at alkaline pH (consistent with our observations) if one takes into consideration lower potential forms of cyt  $b_{559}$  ( $E_{m,>7.6} = 145$  mV; Ortega et al., 1988). From the experimental data and this thermodynamic analysis, we argue in favor of Q<sub>B</sub>H<sub>2</sub> as the source of reductant of cyt  $b_{559}$  ox, although further experiments

Scheme II: Summary of Pathways and Rates of Electron Donation to P680<sup>a</sup>



<sup>a</sup> Rates are written in terms of  $t_{1/2}$ . Solid lines, forward electron transfer reactions; dotted lines, reverse charge recombination reactions [reviewed in Cramer and Whitmarsh (1977), Babcock (1987), Thompson et al. (1988), Vass and Styring (1991), and Diner et al. (1991)].

will be necessary to unequivocally show whether the quinol or the semiquinone, or both, is the direct reductant to cyt  $b_{559}^{\text{ox}}$ .

On the basis of our results and their mechanistic implications, we can now incorporate the paths of oxidation and reduction of cyt  $b_{559}$  in the overall schematic picture of electron transfer in PSII (Scheme II). As shown, cyt  $b_{559}$  mediates cyclic transfer within PSII, where cyt  $b_{559}$  is oxidized by P680<sup>+</sup> via a monomer chlorophyll (Chl<sub>z</sub>; Thompson et al., 1988) and is reduced by a reducing equivalent from the Q<sub>B</sub> site. In the past, our laboratory has suggested that the cyt  $b_{559}$  path functions to protect PSII from photoinhibition by rereducing P680<sup>+</sup> either when the dominant Mn path is inhibited or when the O2-evolving enzyme is unable to maintain the electron requirement of the primary electron donor under continuous high-intensity light conditions (Thompson & Brudvig, 1988). Under physiological conditions, reduction of P680<sup>+</sup> proceeds primarily along the Mn path and, to a much lesser extent, along the cyt  $b_{559}$  and  $Y_D$  paths. During strong-light illumination, the inhibition of the  $S_1$  to  $S_2$  state transition and the stable oxidation of cyt  $b_{559}$  (and  $Y_D$ ) are observed; only the monomer  $Chl_z$  of the cyt  $b_{559}$  path remains photochemically active and is not stably oxidized during periods of high-intensity illumination (Styring et al., 1990). Although the origin of photoinhibition remains controversial and different schemes involving donor- or acceptor-side phenomena have been reported [reviewed by Osmond (1981) and Powles (1984)], any mechanism which may protect PSII from photoinhibition must involve the dissipation of excess excitation energy before the occurrence of irreversible, damaging reactions. The cyt  $b_{559}$  path may offer this protection in one of two ways. One possibility is that the cyt  $b_{559}$  cycle around PSII is sufficient to rereduce P680<sup>+</sup> under photoinhibitory conditions in the in vivo system. Although the reduction kinetics of cyt  $b_{559}$  in BBY-type PSII-enriched membranes are too slow for such a model, the rate of reduction of cyt  $b_{559}$  is more than 2 orders of magnitude faster in chloroplasts ( $t_{1/2} = 100 \text{ ms}$ ; Whitmarsh & Cramer, 1977) than in PSII-enriched membranes and is

of the same magnitude as the turnover rate in saturating light. In this case, the observation that cyt  $b_{559}$  is stably oxidized under such conditions would mean that the rate of cyt  $b_{559}$  to  $Chl_z^+$  electron donation is faster than the rate of cyt  $b_{559}$ reduction. A second possibility by which the cyt  $b_{559}$  path may protect PSII from photoinhibition involves fluorescence quenching. In this case, Chlz+, formed by electron donation to P680+, quenches excitation energy by radiationless decay of the excited doublet to the ground state while cyt  $b_{559}$  remains oxidized. In accordance with the latter mechanism of energy dissipation, an increase in the quenching of Chl fluorescence together with a decrease in the efficiency of electron transport is observed as the light intensity is increased and at low pH (Noctor & Horton, 1990). Recently, Crofts and Horton (1991) have found that the low-pH-dependent quenching of Chl fluorescence also requires oxidizing conditions, where redox titrations indicated that a component with a midpoint potential of 405 mV at pH 4.0 needed to be oxidized in order to observe quenching of Chl fluorescence.

Clearly, our data on the photooxidation and dark reduction of cyt  $b_{559}$  together with information on the dark redox state of cyt  $b_{559}$  and  $Q_A$  (and indirectly also  $Q_B$ ) have significant implications on the predicted dark redox state of PSII and, as such, on the interpretation and simulation of flash-induced thermoluminescence, flash-induced O2 yield patterns and other PSII-related reactions. For example, in the past, the chargeseparated state S<sub>2</sub> Q<sub>A</sub> Q<sub>B</sub><sup>2-</sup> cyt b<sub>559</sub><sup>ox</sup> was assumed not to show thermoluminescence due to protonation and dissociation of Q<sub>B</sub>H<sub>2</sub> (Rutherford et al., 1984). However, electron transfer from bound  $Q_BH_2$  to oxidized cyt  $b_{559}$  would result in the state S<sub>2</sub> Q<sub>A</sub> Q<sub>B</sub><sup>-</sup> cyt b<sub>559</sub><sup>red</sup>, which would be expected to show thermoluminescence due to S<sub>2</sub> Q<sub>B</sub>-\* charge recombination. Knowing the pH dependence of the dark reduction of cyt  $b_{559}$ , reduction of cyt  $b_{559}$  by  $Q_{B}^{-} \cdot$  could be further examined by studying the thermoluminescence of PSII-enriched membranes after 1 and 2 flashes with and without cyt  $b_{559}$  preoxidized over the pH range 5-8.

It is interesting to note that the pH dependence of the kinetics of photooxidation and dark reduction of cyt  $b_{559}$  in PSIIenriched membranes may explain the one-flash shift observed in the period 4 oscillation of O<sub>2</sub> release at basic pH. Plijter et al. (1986) observed that the release of O<sub>2</sub> is shifted to the fourth flash at pH  $\geq$  7.5 in BBY-type PSII preparations (time between flashes = 300 ms). The authors ascribe the oneflash shift to the dark reduction of the S<sub>1</sub> state to S<sub>0</sub> at basic pH. Although their experimental conditions are somewhat different, we would like to suggest an alternative explanation to their data. The pH at which the release of O<sub>2</sub> is shifted from the third to the fourth flash corresponds quite well to the pH dependence of the kinetics of cyt  $b_{559}$  photooxidation (Figure 7). On the time scale between their flashes, it is possible that cyt  $b_{559}$  is oxidized after the first, second, or third flash at pH > 7.5, thereby reducing  $S_{n+1}$  to  $S_n$  and shifting the O<sub>2</sub> release pattern by one flash. Furthermore, Plijter et al. (1986) report a halftime of 45 s for the rate of reduction of S<sub>1</sub> to S<sub>0</sub> at pH 8.3. Entirely consistent with our reinterpretation of their observations, we observe a  $t_{1/2} = 35$  s for the rate of reduction of cyt  $b_{559}$  at pH 8.3 (Figure 4b). Therefore, we suggest that, at basic pH and for a relatively slow flash frequency, a one-flash shift in the four-flash periodicity of the O<sub>2</sub> release may be due not to a change in the dark S-state population but instead to the rereduction of  $S_{n+1}$  to  $S_n$  after the first, second, or third flash by cyt  $b_{559}$ . In agreement with our reinterpretation, Damoder and Dismukes (1984) have found the yield of formation of the S2 state after

a single flash at room temperature to be independent of pH, indicating a pH-independent dark S-state population.

Most likely, the reason the photooxidation of cyt  $b_{559}$  has not been observed previously in O2-evolving PSII is due to the significant fraction of stable, oxidized cyt  $b_{559}$  in the dark (Figure 1b) and its slow rate of photooxidation (Figure 7) at pH 6.0. Similar to the redox characterization of cyt  $b_{559}$  in PSII by Ortega et al. (1988), we find the fraction of darkoxidized cyt  $b_{559}$  is pH independent at neutral and basic pH (with about 1/3 of cyt  $b_{559}$  oxidized in dark-adpated PSIIenriched membranes) but becomes pH dependent at more acidic pH. These authors assume a stoichiometry of two cyt  $b_{559}$  per reaction center and interpret their redox titration data of cyt  $b_{559}$  in terms of two distinct populations, a lowand a high-potential form of cyt  $b_{559}$ . However, our data from optical and EPR spectroscopy (Buser et al., 1992; Figure 1) indicate a 1:1 stoichiometry of cyt b<sub>559</sub> per PSII reaction center. Assuming one copy of cyt  $b_{559}$  per reaction center, the obvious question is the physiological significance of the range of observed midpoint potential(s) of cyt  $b_{559}$ . Unfortunately, most redox titration studies of cyt  $b_{559}$  and also of other redoxactive components of PSII are usually performed on darkadapted PSII-enriched membranes or thylakoids, which may not be representative of the redox state of the sample during illumination. As a result, it is difficult to correlate the darkoxidized and the photooxidized fractions of cyt  $b_{559}$  to a specific potential form. To understand the significance of the different potential forms of cyt  $b_{559}$ , it is necessary to determine the redox potential of cyt  $b_{559}$  and the electron acceptors  $Q_A$  and QB as a function of pH and to correlate these data with the photochemical reactions of cyt  $b_{559}$ . Such a potentiometric redox titration would provide additional information on the equilibrium between cyt  $b_{559}$  and  $Q_B$ , as shown in eq 1, and should yield a consensus regarding the function of the different forms of cyt  $b_{559}$ .

## **REFERENCES**

- Amesz, J. (1973) Biochim. Biophys. Acta 301, 35.
- Arnon, D. I. (1949) Plant Physiol. 24, 1.
- Arnon, D. I., & Tang, G. M.-S. (1988) Proc. Natl. Acad. U.S.A. 85, 9524.
- Babcock, G. T. (1987) in *Photosynthesis* (Amesz, J., Ed.) p 125, Elsevier Science Publishers, The Hague, The Netherlands.
- Babcock, G. T., Ghanotakis, D. F., Ke, B., & Diner, B. A. (1983)

  Biochim. Biophys. Acta 723, 276.
- Beck, W. F., de Paula, J. C. & Brudvig, G. W. (1985) Biochemistry 24, 3035.
- Ben-Hayyim, G. (1984) Eur. J. Biochem. 106, 329.
- Berthold, D. A., Babcock, G. T., & Yocum, C. F. (1981) FEBS Lett. 134, 231.
- Buser, C. A., Thompson, L. K., Diner, B. A., & Brudvig, G. W. (1990) *Biochemistry* 29, 8977.
- Buser, C. A., Diner, B. A., & Brudvig, G. W. (1992) Biochemistry (preceding paper in this issue).
- Conjeaud, H., & Mathis, P. (1980) Biochim. Biophys. Acta 590, 353.
- Cramer, W. A., & Whitmarsh, J. (1977) Annu. Rev. Plant Physiol. 28, 133.
- Cramer, W. A., Horton, P., & Wever, R. (1975) in *Electron Transfer Chains and Oxidative Phosphorylation* (Quagliariello, E., Ed.) p 31, North-Holland Publishing Co., Amsterdam, The Netherlands.

- Cramer, W. A., Theg, S. M., & Widger, W. R. (1986) Photosynth. Res. 10, 393.
- Crofts, J., & Horton, P. (1991) Biochim. Biophys. Acta 1058, 187.
- Damoder, R., & Dismukes, G. C. (1984) FEBS Lett. 173, 157.
   Dekker, J. P., van Gorkom, H. J., Brok, M., & Ouwehand, L. (1984) Biochim. Biophys. Acta 765, 301.
- Diner, B. A., & Delosme, R. (1983) Biochim. Biophys. Acta 722, 452.
- Diner, B. A., Petrouleas, V., & Wendoloski, J. J. (1991) Physiol. Plant. 81, 423.
- Duysens, L. N. M. (1956) Biochim. Biophys. Acta 19, 1.
- Heber, U., Kirk, M. R., & Boardman, N. K. (1979) Biochim. Biophys. Acta 546, 292.
- Horton, P., & Cramer, W. A. (1976) Biochim. Biophys. Acta 430, 122.
- Horton, P., Whitmarsh, J., & Cramer, W. A. (1976) Arch. Biochem. Biophys. 176, 519.
- Joliot, P., Béal, D., & Frilley, B. (1980) J. Chim. Phys. 77, 209. Lavergne, J. (1987) Biochim. Biophys. Acta 894, 91.
- Lavergne, J., & Etienne, A.-L. (1980) Biochim. Biophys. Acta 593, 136.
- Mathis, P., & Rutherford, A. W. (1987) in *Photosynthesis* (Amesz, J., Ed.) p 63, Elsevier Science Publishers B. V., The Hague, The Netherlands.
- Metz, J. G., Nixon, P. J., Rögner, M., Brudvig, G. W., & Diner, B. A. (1989) *Biochemistry 28*, 6960.
- Noctor, G., & Horton, P. (1990) Biochim. Biophys. Acta 1016, 228.
- Ortega, J. M., Hervás, M., & Losada, M. (1988) Eur. J. Biochem. 171, 449.
- Osmond, C. B. (1981) Biochim. Biophys. Acta 639, 77.
- Pakrasi, H. B., Nyhus, K. J., & Granok, H. (1990) Z. Naturforsch. 45C, 423.
- Plijter, J. J., de Groot, A., van Dijk, M. A., & van Gorkom, H. J. (1986) FEBS Lett. 195, 313.
- Powles, S. B. (1984) Annu. Rev. Plant Physiol. 35, 15.
- Pulles, M. P. J., van Gorkom, H. J., & Verschoor, G. A. M. (1976) Biochim. Biophys. Acta 440, 98.
- Robinson, H. H., & Crofts, A. R. (1984) in Advances in Photosynthesis Research (Sybesma, C., Ed.) Vol. 1, p 477, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands.
- Rutherford, A. W., Renger, G., Koike, H., & Inoue, Y. (1984) Biochim. Biophys. Acta 767, 548.
- Samson, G., & Fork, D. C. (1991) Photosynth. Res. 27, 179.
  Stein, R. R., Castellvi, A. L., Bogacz, J. P., & Wraight, C. A. (1984) J. Cell. Biochem. 24, 243.
- Stiehl, H. H., & Witt, H. T. (1968) Z. Naturforsch. 23b, 220. Styring, S., Virgin, I., Ehrenberg, A., & Andersson, B. (1990) Biochim. Biophys. Acta 1015, 269.
- Thompson, L. K., & Brudvig, G. W. (1988) Biochemistry 27,
- Thompson, L. K., Miller, A.-F., de Paula, J. C., & Brudvig, G. W. (1988) Is. J. Chem. 28, 121.
- Thompson, L. K., Miller, A.-F., Buser, C. A., de Paula, J. C., & Brudvig, G. W. (1989) Biochemistry 28, 8048.
- Tsujimoto, H. Y., & Arnon, D. I. (1985) FEBS Lett. 179, 51.
- van Gorkom, H. J. (1974a) Biochim. Biophys. Acta 347, 417. van Gorkom, H. J. (1974b) Biochim. Biophys. Acta 347, 439. Vass, I., & Styring, S. (1991) Biochemistry 30, 830.
- Whitmarsh, J., & Cramer, W. A. (1977) Biochim. Biophys. Acta 460, 280.
- Whitmarsh, J., & Cramer, W. A. (1978) Biochim. Biophys. Acta 501, 83.
- Yamagishi, A., & Fork, D. C. (1987) Arch. Biochem. Biophys. 259, 124.
  - **Registry No.** cyt b<sub>559</sub>, 9044-61-5; Chl P680, 53808-91-6.